СКОРОСТЬ: значение слова

Начните вводить слово:
Нажмите сюда, чтобы развернуть список словарей

Энциклопедический Словарь Ф.А.Брокгауза и И.А.Ефрона

СКОРОСТЬ

(la vitesse, die Geschwindigkeit, velocity). ≈ Понятие о С. получается из понятий о средней С. в пути и средней С. перемещения. При рассмотрении движения точки по прямой или данной кривой линии приходится говорить как о длине пути, пройденного точкою в течение какого-либо промежутка времени, так и о перемещении ее в течение того же промежутка; эти величины могут и не быть одинаковы, если движение происходило то в одну, то в другую сторону по пути. Говоря о перемещении, приходится выбрать на пути неподвижную точку как начало считаемых от нее расстояний по кривой или пути и условиться, в которую сторону по кривой считать расстояния от этого начала положительными; тогда в противоположную сторону придется считать расстояния отрицательными длинами по кривой. Пусть s 1 и s 2 суть расстояния движущейся точки в моменты времени t 1 и t 2 , при чем t 2 больше t 1 . Разность ( s 2 ≈s 1 ) называется перемещением точки за промежуток времени t 2 ≈t 1 ; оно может быть положительным или отрицательным. Если в течение этого промежутка времени направление движения точки не переменялось в противоположное, то длина пути будет равна величине расстояния по кривой между положениями точки в моменты t 1 и t 2 и эту величину мы всегда будем рассматривать как положительную, хотя бы расстояние ( s 2 ≈s 1 ) и было отрицательным. Если в течение этого промежутка времени направление движения менялось один или несколько раз в противоположное, то длиною пути будем называть сумму положительно взятых длин между положением в момент t 1 и положением в момент первой перемены направления, положением в этот момент и положением в момент второй перемены направления и т. д. В этом случае полная длина пути не будет равна величине расстояния ( s 2 ≈s 1 ), даже если бы последнее было положительным. Отношение величины ( s 2 ≈s 1 ) к величине ( t 2 ≈t 1 ) называется среднею С. перемещения за этот промежуток времени, а отношение длины пути к величине ( t 2 ≈t 1 ) называется среднею С. в пути за тот же промежуток времени. Последняя всегда положительная, а первая может быть и отрицательною. Если в течение рассматриваемого промежутка времени направление движения не менялось, то средняя С. перемещения равняется средней С. в пути, если движение происходило в сторону возрастающих расстояний, или равняется отрицательно взятой средней. С. в пути, если движение совершалось в сторону убывающих расстояний. Равномерным движением называется такое движение, при котором средняя С. одинакова для всяких промежутков времени, больших или сколь угодно малых; при неравномерных движениях величина средней С. для одного и того же промежутка времени различна в различных частях пути и, кроме того, величина эта изменяется при изменении величины промежутка времени. К понятию о скорости в какой-либо момент движения переходят следующим образом. Каково бы ни было движение точки, во всяком случае при всяком движении расстояние s может быть выражено некоторою непрерывною функциею от t. Возьмем произвольный момент t и определим среднюю С. промежутка времени, заключающего этот момент; полученная величина будет изменяться по мере уменьшения выбранного промежутка времени. Предел, к которому будет приближаться средняя С. по мере приближения промежутка времени к нулю, называется С. движения в рассматриваемый момент. В статье Дифференциальное исчисление (см.) говорилось именно об этой величине С. Это есть производная от s = f ( t ) по t . Величина эта будет положительною, если в момент t точка двигалась в сторону возрастающих s , и она будет отрицательною в случае движения в сторону убывающих s. Предел средней С. в пути, найденный подобным же образом для того же момента t , будет во всяком случае положительною величиною v. Это будет та же самая величина, какую представляет производная от s по t , если движение совершается в сторону возрастающих s ; а если движение совершается в сторону убывающих s , то v равна отрицательно взятой производной от s по t . Величина С. в какой-либо момент, как и величина средней С., есть отношение длины ко времени. О единице С. сказано в ст. Абсолютная система единиц (см.). В морской практике употребляется единица С., называемая узлом ; это та С., при которой в час проходится итальянская миля, т. е. 1852 метра, поэтому узел равен 0,514 [метр]/[секунда] = 50 [фут]/[полуминута]. С. представляют себе в виде вектора (см.), отложенного от места, занимаемого точкою в пространстве и имеющего направление по касательной к кривой, описываемой точкою, в сторону движения. Длина этого вектора должна так относиться к единице длины, как величина v к единице С. Если положение точки выражается координатами ее x , у , z по отношению к прямоугольным прямолинейным неподвижным осям координат, то координаты движущейся точки должны выражаться непрерывными функциями от t. Проекции С. v на оси координата выражаются производными от этих функций по времени, а именно: vcos ( vX ) = dx / dt vcos ( vY ) = dy / dt vcos ( v Z ) = dz / dt О годографе С. точки cм соотв. ст. Об угловой С. см. Вращательное движение. Относительно величин скоростей, встречающихся в разных случаях движения, см. брошюру: "Таблицы встречаемых в технике С., выраженных в метра в секунду", инж.-технол. П. Киреева, 3 изд., 1881, СПб. Д. Б.