мн.
Собрание, свод положений, установок, определяющих порядок чего-л.
Энциклопедический Словарь Ф.А.Брокгауза и И.А.Ефрона
ПРАВИЛА
Правила ложных положений
≈ regulae falsi или falsorum, также numeratio divinationis зап.-европ. арифметических учебников как средневековых, так и нового времени почти до исхода XVIII в. Первоначально представляли два вида методов (ныне совсем оставленных) решения линейных уравнений. Простейший из этих методов П. одного ложного положения (ishta karman индусских математических сочинений, в Зап. Европе ≈ r é gula falsi simplicis positionis) состоял в замене неизвестного произвольно взятым числом и в следующем за тем определении истинной величины неизвестного на основании пропорциональности, существующей между ним, его произвольным значением и соответствующими результатами указываемых условиями задачи вычислений. Примером может служить следующая задача, заимствованная из "Liber Abaci" Леонарда Пизанского. Определить высоту дерева, часть которого, сидящая под землей и равная 21 пяди, составляет треть и четверть его высоты. Если принять за искомую высоту число 12, как делящееся на 3 и на 4, то для подземной части дерева получится число 7, приводящее, очевидно, к пропорции 7:21 = 12: x , в которой х есть равное 36 истинное значение неизвестного. Употребление этого метода встречается уже в Папирусе Ринда (см. задачу ╧ 40 по изд. Эйзенлора). П . двух ложных положений изобретено индусами, от которых перешло к арабам, доставившим ему очень широкое распространение как в собственной математической литературе, под именем "метода чашек весов", так и через ее посредство в литературе Европы. Теоретически это П. может быть выведено следующим образом. В решаемое уравнение ax + b = 0 подставляются последовательно вместо х произвольные числа (ложные положения) z 1 и z 2 обращающие первую часть уравнения соответственно в числа φ 1 и φ 2 , назыв. обыкновенно ошибками уравнений. Вычитание полученных тождеств az 1 + b = φ 1 и az 2 Полное определение слова «ПРАВИЛА»
≈ regulae falsi или falsorum, также numeratio divinationis зап.-европ. арифметических учебников как средневековых, так и нового времени почти до исхода XVIII в. Первоначально представляли два вида методов (ныне совсем оставленных) решения линейных уравнений. Простейший из этих методов П. одного ложного положения (ishta karman индусских математических сочинений, в Зап. Европе ≈ r é gula falsi simplicis positionis) состоял в замене неизвестного произвольно взятым числом и в следующем за тем определении истинной величины неизвестного на основании пропорциональности, существующей между ним, его произвольным значением и соответствующими результатами указываемых условиями задачи вычислений. Примером может служить следующая задача, заимствованная из "Liber Abaci" Леонарда Пизанского. Определить высоту дерева, часть которого, сидящая под землей и равная 21 пяди, составляет треть и четверть его высоты. Если принять за искомую высоту число 12, как делящееся на 3 и на 4, то для подземной части дерева получится число 7, приводящее, очевидно, к пропорции 7:21 = 12: x , в которой х есть равное 36 истинное значение неизвестного. Употребление этого метода встречается уже в Папирусе Ринда (см. задачу ╧ 40 по изд. Эйзенлора). П . двух ложных положений изобретено индусами, от которых перешло к арабам, доставившим ему очень широкое распространение как в собственной математической литературе, под именем "метода чашек весов", так и через ее посредство в литературе Европы. Теоретически это П. может быть выведено следующим образом. В решаемое уравнение ax + b = 0 подставляются последовательно вместо х произвольные числа (ложные положения) z 1 и z 2 обращающие первую часть уравнения соответственно в числа φ 1 и φ 2 , назыв. обыкновенно ошибками уравнений. Вычитание полученных тождеств az 1 + b = φ 1 и az 2 Полное определение слова «ПРАВИЛА»