ЛИТИЙ: значение слова

Начните вводить слово:
Нажмите сюда, чтобы развернуть список словарей

Энциклопедический Словарь Ф.А.Брокгауза и И.А.Ефрона

ЛИТИЙ

(Li, атомный вес 7) ≈ был открыт Арфведсоном в 1817 г. при анализе минерала петалита , затем он был найден им в лепидолите и во многих других минералах. Арфведсон указал на сходство Л. со щелочными металлами и назвал его Л. (от λύθος ≈ камень) в знак того, что этот элемент он встретил впервые в минеральном царстве. Подобно калию и натрию, Li имеет обширное распространение в природе, но встречается в небольших количествах. Наиболее богатые минералы содержат не более 9-10% окиси Л. Li 2 O; напр., в монтебразите (фосфорнокислая соль Л. и алюминия) ее находится до 9,8%, в трифилине (фосфорнокислая соль железа, марганца и Л.) от 3,4% до 7,7%, в силикатах: криофиллите до 4,1%, в лепидолите от 1,3% до 5,7% и пр. Л. найден в некоторых метеоритах, в морской воде, во многих реках и минеральных источниках, напр. в Карлсбаде, Мариенбаде, Баден-Бадене и пр., в некоторых растениях, напр. в табаке и пр. Металлический и в свободном состоянии в природе не встречается, подобно калию и натрию. Несмотря на все попытки, Арфведсону не удалось его выделить. В первый раз он был получен Брандесом при действии гальванического тока на окись, но Л. получилось так мало, что нельзя было изучить его свойств; только в 1855 г. Бунзену и Матиссену удалось получить его в достаточном количестве при электролизе хлористого Л., LiCl. Эта соль плавилась в фарфоровом тигле на горелке, и через нее пропускался ток от 5-6 элементов Бунзена. Положительным электродом служила палочка кокса, а отрицательным ≈ тонкая железная проволока. На ней выделялся Li в виде небольших шариков. Так как при этом теряется много хлористого Л., который разбрызгивается во все стороны, то Трост предложил следующий простой способ. Берут высокий чугунный тигель с крышкой, хорошо пригнанной. В ней два отверстия. В одно проходит отрицательный электрод, а в другое металлическая трубка, доходящая до половины тигля; сюда вставляют фарфоровую трубочку, через которую уже и пропускают положительный электрод. При получении Li температура не должна быть высока, так как, по Гюнцу, образовавшийся Li может действовать на LiCl, давая Li 2 Cl. Чтоб понизить температуру плавления LiCl, Гюнц смешивает его с КСl в эквивалентном количестве. Но тогда получается Li с содержанием калия. Что касается получения Li химическим путем, подобно, напр., калию или натрию, то результаты получаются неудовлетворительные. Ни углекислая соль Л., ни водная окись не восстановляются до металла, напр. с углем или железом; углелитиевая соль с магнием дает Li, но реакция идет очень бурно, и Li получается с магнием. Li ≈ металл серебристого цвета, более твердый, чем калий и натрий, но мягче свинца, тянется в проволоку менее прочную, чем свинцовая. Уд. вес около 0,59, так что он легче всех известных твердых тел. Л. плавится около 180╟; не летит при красном калении. Теплоемкость по Реньо 0,908 (от 27╟ до 100 ˚); электропроводность 19 при 20 (для Ag = 100). Спектр Li характеризуется ярко-красной линией Liα. По Бунзену ≈ достаточно 0,000009 мгр. хлористого Л., чтобы эта линия выступила с ясностью. В сухом воздухе или кислороде при обыкновенной температуре или при нагревании до 180╟ он не изменяется; при 200╟ же воспламеняется и горит ослепительно ярким светом. Л. разлагает воду при обыкновенной температуре, но при этом он не воспламеняется подобно, напр., натрию. Во влажном воздухе цвет его темнеет. Брошенный в азотную кислоту, он воспламеняется. При нагревании он горит в углекислоте, восстановляет кремнезем и пр. Л. прямо соединяется с хлором, бромом, иодом, с серой, фосфором, азотом. Из кислот соляной, слабой серной выделяет водород; крепкая HJO 4 на него мало действует; с металлами он образует многочисленные сплавы. Соединения Л. Li принадлежит к одноатомным элэментам и дает соединения вида LiX (где Х ≈ одноатомный элемент или группа). По характеру своих соединений Li занимает среднее место между типичными щелочными металлами и щелочноземными; из последних в особенности он схож с магнием. Так, напр., водная окись Л. LiHO, подобно едкому натру или кали, хорошо растворима в воде, углекислая же соль Li 2 CO 3 , как и для кальция, стронция, бария или магния, малорастворима; сернокислая соль Li 2 SO 4 хорошо растворима, а фосфорнокислая Li 3 PO 4 плохо и пр. LiHO при накаливании не дает окиси Li 2 O, как NaHO или КНО, но LiNO 3 , подобно азотнокислым солям магния, кальция и пр., дает Li 2 O, а не LiNO 2 и пр. С кислородом Л. дает два соединения: окись Li 2 O и перекись. Окись Li 2 O получается при горении Л. в кислороде, при прокаливании азотнокислого Л. LiNO 3 или при накаливании смеси углекислого Л. Li 2 CO 3 с углем. Li 2 O ≈ вещество белого цвета, чрезвычайно прочное: при накаливании с углем, железом, калием оно не разлагается; водород не восстановляет его. Li 2 O при накаливании не действует на платину, в противоположность щелочам. В воде она медленно растворяется с выделением небольшого количества тепла и дает резко щелочной раствор; при этом образуется водная окись LiHO. При выпаривании раствора окиси Л. в пустоте образуется кристаллический гидрат LiHO+H 2 O. На воздухе LiHO притягивает воду; в горячей воде она так же растворима, как и в холодной, не растворяется в смеси спирта с эфиром. Плавится ниже красного каления, и прокаливанием нельзя получить из нее безводную окись Li 2 O. Перекись Л. образуется в некотором количестве при горении Л. в кислороде, при прокаливании Li 2 KO или LiO 3 на воздухе. Она появляется здесь в виде желтого налета. Ей приписывается отчасти разъедание платины при накаливании Li 2 O. Хлористый Л. LiCl получается при действии хлора на Li, соляной кислоты на LiHO или LiCO 3 и пр. LiCl очень гигроскопичен; на воздухе он расплывается, в воде хорошо растворяется; 100 ч. воды, напр., при 0╟ растворяют 63,7 ч. его, при 80╟ ≈ 115 ч. и пр. При выпаривании (при нагревании) растворов его происходит отчасти разложение с выделением LiHO и НСl, как для MgCl 2 . При выпаривании над серной кислотой получается гидрат LiCl+2H 2 O; известна и LiCl+H 2 O. LiCl растворим также в спирту. При красном калении LiCl плавится, при этом кислород воздуха частью разлагает его с выделением хлора и образованием окиси Л., или хлорокиси. Летучесть LiCl при накаливании больше NaCl и меньше КСl. Подобно другим хлористым соединениям щелочных металлов, LiCl дает двойное соединение с хлорной платиной Li 2 PtCl 6 +2Н 2 O. Оно растворимо в воде, в спирте и в смеси спирта с эфиром. Гюнц указывает на существование Li 2 Cl. Бромистый и иодистый Л. LiBr, LiJ получаются при разложении углекислого Л. Li 2 CO 3 бромистоводородной и иодистоводородной кислотами. Эти соли также очень гигроскопичны и также отчасти разлагаются водой и кислородом, как и LiCl. Из них LiJ наиболее растворим, за ним идет LiBr и LiCl. Напр., 100 ч. воды растворяют при 0╟ LiJ ≈ 151 ч., а LiBr ≈ 143 ч. Фтористый Л. приготовляется тоже из LiCO 2 , в воде он мало растворим, с HF дает соединение LiFHF. Известны соли Л., отвечающие хлорноватой, бромноватой, иодноватой кислотам. Они очень гигроскопичны. Углекислый Л. Li 2 CO 3 получается при насыщении раствора LiHO углекислотой, при действии на растворимые соли Л. углекислых щелочей и пр. В последнем случае лучше брать углеаммиачную соль, так как Li 2 CO 3 очень упорно удерживает следы щелочей. Li 2 CO 3 плавится при красном калении, частью разлагаясь (по Тросту, до 83%). В воде он мало растворяется (при обыкновенной темпер. 1 литр растворяет около 12-15 грм. соли); при нагревании растворимость уменьшается. В присутствии СО 2 растворимость значительно возрастает; напр., в 1 лит. его тогда растворяется 52,5 гр. Здесь выступает сходство с углекислыми солями щелочноземельных металлов. При кипячении Li 2 CO 3 разлагает аммиачные соли, подобно магнию; он растворяет мочевую кислоту и применяется в медицине. Двууглекислой соли для Li не известно с точностью, хотя, вероятно, образованием ее и обусловливается большая растворимость Li 2 CO 3 в воде с СО 2 . Азотнокислый Л. LiNO 3 получается растворением Li 2 CO 3 в азотной кислоте. Он очень гигроскопичен, легко дает пересыщенные растворы. При испарении растворов LiNO 3 при 15╟ получаются кристаллы, изоморфные с натровой селитрой. LiNO 3 растворяется в спирту; при накаливании он разлагается до Li 2 O. Сернокислый Л., LiSO 4 , получается растворением Li 2 CO 3 в H 2 SO 4 . В воде он хорошо растворяется, но с повышением темпер. растворимость падает; напр., 100 ч. воды при 0 ˚ раствор. 35,34 ч., при 20╟ ≈ 34,36, при 100╟ ≈ 29,24. При медленном испарении растворов сернокислого Л. получаются кристаллы состава LiOH. Сернокислый Л. дает двойные соли с сернокислым калием, аммонием, но не дает соединений, отвечающих квасцам. Кислая сернокислая соль Л. получается при растворении LiSO 4 в крепкой серной кислоте. Фосфорнокислый Л., Li 3 PO 4 , получается при осаждении LiSO 4 фосфорнонатриевой солью в присутствии некоторого количества NaHO и NH 3 при нагревании. Он получается в виде кристаллов состава 2Li 3 PO 4 +H 2 O. 1 ч. безводной соли требует для растворения 2539 ч. воды или 3920 ч. аммиачной воды. В слабой соляной и азотной кисл. соль растворяется; растворимость ее в воде увеличивается в присутствии аммиачных солей, с которыми она дает двойные соединения, и в присутствии СО 2 . Другие соли фосфорной кислоты не представляют особого интереса. То же можно сказать про соли борной и хромовой кисл., которые вообще растворимы в воде. Сернистый Л. Li 2 S получается при восстановлении углем сернолитиевой соли. Li 2 S растворяется в воде, дает кислую соль LiHS, известны также многосернистые соединения Л. С азотом Li соединяется даже при обыкновенной температуре. Гюнц предложил применять Li для получения аргона из воздуха. Что касается отделения и количественного определения Л., то можно сказать следующее. От тяжелых металлов Li отделяется осаждением последних сероводородом или сернистым аммонием; от кальция, стронция и бария - пользуясь растворимостью сернокислого и щавелевокислого Л., от магния ≈ пользуясь растворимостью водной окиси Л. Калий отделяется от него благодаря нерастворимости хлороплатинита калия; что же касается отделения натрия, то пользуются растворимостью в смеси спирта и эфира LiCl или LiNO 3 . Для количественного определения применяется сернокислая и фосфорнокислая соль Л. Для полноты остается сказать несколько слов о способах получения на практике соединений Л. из природных материалов. Для этой цели служит главным образом лепидолит. Способов для извлечения оттуда Л. предложено много. Когда дело идет о приготовлении его в большом количестве, очень удобен способ Троста. 10 ч. измельченного лепидолита смешивают с 10 ч. углекислого бария, 5 ч. сернокислого бария и 3 ч. сернокислого калия. Массу сплавляют в тигле; при охлаждении она представляет два слоя: верхний образован сернокислыми солями лития, калия и бария, а нижний состоит из стекла. Так как это стекло очень трудно плавится, можно дать массе только несколько охладиться и слить верхний слой. Обработав массу водой, получают сернокислый Л. в смеси с сернокислыми щелочами; их переводят в углекислые соли (осаждая уксуснокислым барием и прокаливая полученные уксуснокислые соли) и разделяют, пользуясь полной растворимостью Li 2 CO 3 . В этом способе BaSO 4 может быть заменен сернокислым кальцием. С. Вуколов. Δ. Во врачебной практике применяется исключительно углекислый и бензойнокислый Л. ≈ белый порошок, который плавится при нагревании, а при охлаждении застывает в кристаллическую массу. Растворяется в 150 ч. горячей или холодной воды. Терапевтическое значение Л. зиждется на его свойстве давать растворимую соль с мочевою кислотою. По способности растворять мочекислые соли Л. превосходит калий и натрий. Указанными свойствами определяется терапевтическое значение этого средства. Употребление Л. приносит пользу при мочекислом диатезе, при подагре, при мочевом песке, при желчной колике и при катаральных состояниях слизистых оболочек. Некоторые врачи предпочитают назначать минеральные воды, богатые содержанием Л. (Bonifaciusquelle в Зальцшлирфе, K ö nigsquelle в Эльстере), так как в таком виде препарат лучше переносится желудком. Углекислый Л. следует прописывать в малых дозах (0,05-0,25 гр.) в большом количестве воды, еще лучше с зельтерскою или содовою водою. Необходимо иметь в виду, что соли Л. оказывают не менее ядовитое действие на сердце, чем соли калия. Д. К.